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Sensitivity Analysis Using
Parallel ODE Solvers and
Automatic Differentiation in C:
SensPVODE and ADIC

Steven L. Lee
Paul D. Hovland

ABSTRACT PVODE is a high-performance ordinary differential equation
solver for the types of initial value problems {(IVPs) that arise in large-
scale computational simulations. Often, one wants to compute sensitivi-
ties with respect to certain parameters in the [VP. We discuss the use of
automatic differentiation (AD) to compute these sensitivities in the con-
text of PVODE. Results on a simple test problem indicate that the use of
AD-generated derivative code can reduce the time to solution over finite
difference approximations.

1  Background

In complicated, large-scale computational simulations, the governing equa-
tious can often be spatially discretized and then numerically solved as a sys-
tem of ordinary differential equation (ODE) or differential-algebraic equa-
tion (DAE) initial value problems. PVODE [BHY99] and IDA [HT99] are
powerlul, parallel codes for solving these types of ODEs and DALs, re-
spectively, The codes are written in C and use MPI to achieve parallelism
and portability. Typically, the equations contain parameter values (e.g.,
chemical reaction rates) that are not precisely known. In analyzing the
simulations, the scientist would like to know which parameters are most
influential in affecting the behavior of the simulation. Such sensitivity in-
formation is useful because it identifies which parameters will require pre-
cise measurements if the simulation results are to be made more accurate,
This article summarizes preliminary work in which automatic differenti-
ation (AD) is being used with PVODE to create a solver that computes
sensitivity information for ODE systems.
In computing sensitivities for ODEs, one is interested in solving

v (1) = f(t,y,p), y(te) =wa(p). y€ RN, pe R™, (r.1)

where the solution vector y(¢) depends upon an additional vector of pa-



rameters p, and the sensitivities are defined as

si(t) = M, i=1,---,m.
()p,'
One approach for computing these sensitivities is to apply AD techniques to
the entire PVODE solver. However, PVODE is a variable-stepsize, variable-
order solver and, for this situation, Eberhard and Bischof [EB99] have
demonstrated that AD may compute unexpected derivative values unless
an a posteriori correction is applied. In contrast to such a “black-box”
approach, it is often superior to couple the use of AD with some insight
into the computational requirements of the problem. 'F'o do this, we formally
differentiate the original ODE (1.1) with respect to each component p; of p.
Thus, we obtain the sensitivity ODEs
4 9 O )

si(t) = %s,([) + %, s5i(to) = (-‘%—), t=1,---,m. (1.2)
The initial sensitivity vector s;(tg) is either all zeros (if p; occurs only in f),
or has nonzeros according to how yo(p) depends on p;. The time integration
of ¥/ (t) and each si{t) can be accomplished by solving an ODE system of
size N(m + 1), where

U([) R f([vyvp)a

s1(1) L)+ 5L
Y = ) and  F(t,Y,p)=
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The new ODE-sensitivity [VP to be solved is simply
Yl(t) = P‘(Iv yrv P)) }!(t()) = Y()(P), (1:;)

and each sf(¢) can be evaluated by computing %'55"(’) + % via AD, or by
approximating their sum via finite differences.

In general, the sensitivities of the ODE problem can be solved for in a
variety of ways. For example, the ODE problems can be decoupled: com-
pute and store the solution y(f) in advance; then use interpolation, along
with AD or finite differences, to evaluate si(¢) wherever needed by an ODE
solver. If the same ODE solver is used for (1.1) and (1.2), the effort needed
to integrate them is often comparable since the ODEs have the same Jaco-
bian matrix %5 and therefore the same stiffness properties. For a compre-
hensive review of methods for computing sensitivity information in ODE
systems, see [RKD83].

SensPVODE [LHBO00] is a variant of PVODE that simultaneously com-
putes the solution and the sensitivities in the augmented ODE system (1.3).
Also, for many large-scale applications, implicit time integration methods



are required. Several papers describe how to modify Newton’s method for
efficiently solving the nonlinear systems that arise at each timestep [F'TBY7,
MP96]. Also, we note that the sensitivity ODEs (1.2) are linear in s;(¢),
even if the original ODE (1.1) is nonlinear. This observation is significant
in the next section as we discuss the need to properly scale the sensitivities
that we compute.

2 Scaled Sensitivities Using Finite Differences

Several observations motivate our modifications to the sensitivity ODEs
(1.2). First, the units for the ODE solution, [y(¢)], and the units for the
sensitivity vectors, [si(t)], do not match. This mismatch in units can lead
to scaling problems, especially when using finite difference methods. For-
tunately, the issue is easily remedied. In particular, the sensitivity vectors
have units of [y}/[p;]. For y(f) and the sensitivities to share the same units,
the linearity of the sensitivity ODEs (1.2) allows us to multiply the sensi-
tivities by their respective parameter values to obtain the scaled sensitivity

ODEs )/ 5
C _ G
wi(t) = =—w;(¢) + p; =, (2.4}
()[),f
where
wi(t) = Fosa(8),

and P; is a nonzero constant that is dimensionally consistent with p;. 'Typ-
ically p; = p;. In general, the scale factor p; can be any nonzero multiple
of p;, and this can sometimes be used to create a well-scaled problem for
the ODE variables and sensitivities.

To improve the accuracy of estimating the scaled sensitivity derivatives
in (2.4), SensPVODE has an option that applies centered differences to
each term separately:

Ay : 24,

and . .
_of _Jlbyp+aipie) — flLy.p—0ip;ei)
Pig— N ;
Op; 24;

. (2.6)

As is typical for finite differences, the proper choice of perturbations d, and
d; is a delicate matter. OQur recommended value for d, and d; takes into
account several problem-related features: the relative ODE error tolerance
RTOL, the machine unit roundoff ¢ achine, and the weighted root-mean-
square (RMS) norin of the scaled sensitivity w;. We then define

!

d; = ax(RTOL, ¢ machine { 6= —M——.
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(2.7)



The terms ¢machine and 1/d; are included as divide-by-zero safeguards in
case RTOL = 0 or ||uw;]| = 0. Roughly speaking (i.e., if the safeguard terms
are ignored), d; gives a VRTOL relative perturbation to parameter 1, and
dy gives a unit weighted RMS norm perturbation to y. Of course, the main

drawback of this approach is that it requires four evaluations of f(¢, y, p).
A less costly technique for estimating scaled sensitivity derivatives is also
based on centered differences. However, it uses the formula

, Of _Of  flt,y+8wi,p+8p;e;) — Ft,y — dwi, p—dp;e5)
w; = - P N -
Oy Op; 20

(2.8)
in which
d = min(d;,dy).

If §; = d,, a Taylor series analysis shows that the sumn of (2.5) and (2.6)
and the value of (2.8) are equivalent to within Q(8?). However, the latter
approach is half as costly, since it requires only two evaluations of f(¢, y, p).
To take advantage of this savings, it may also be desirable to use the latter
formula when d; = d,. In [LHBO00], we explore the possibility of allowing
SensPVODE to select the finite difference formula based on how closely 4;
and 4, agree.

In summary, the sensitivity version of PVODE is equipped with a va-
riety of finite difference formulas for approximating the scaled sensitivity
derivatives. However, for some problems, finite differences do not work.
Typically, difficulties arise in applications where the solution components
are very badly scaled. In addition to failure or accuracy problems, finite
differences may be inefficient for functions f(¢,y,p) that are expensive to
evaluate. Such shortcomings motivate the need for an efficient, exact, and
(preferably) automated process for computing sensitivity derivatives within

SensPVODE.

3 Scaled Sensitivities Using AD

Automatic differentiation must be nearly as easy to use as finite differ-
ences, or it will only be used when finite differences fail, if at all. Previous
work [Cor92, LP99, FMM98, ABG 100, Ger00] has demonstrated that it is
possible to automate the AD process by exploiting the existence of well-
defined interfaces for the user’s function implementing f(¢, y, p). 'This makes
it easy to identify the independent and dependent variables and to properly
initialize the AD-generated code.

Applying AD is complicated by the fact that the user’s function is -
plemented in C with MPI parallelisin [(GLS94]. We are therefore adding
support for MPI to the ADIC [BRM97] automatic differentiation tool,
building on earlier work by Hovland [Hov97, HBY8]. The use of C poses



challenges from the standpoint of automation. PVODE, like many other
numerical toolkits, allows the user to pass around application-specific data
in a user-defined struct. As part of the AD process, it may be necessary
to associate derivatives with some of the variables in this structure. To
avoid aliasing problems, this generally implies changing the type of these
variables [BRMYT]. Thus, all code (not just the function) must be modi-
fied to use this new datatype. Qur initial approach has been to circumvent
this problem through the use of two data structures, one with derivatives
and one without, copying data back and forth as necessary. To eliminate
the overhiead of copying, we plan to use a single data structure. "This will
necessitate applying ADIC to automatically modify the user code to use
the new datatype.

4  Experimental Results

We applied SensPVODE to a simple test case, a two-species diurnal kinet-

ies advection-diffusion system in two space dimensions. The PDEs can be

written as

dc; 0% Oe; 3] . dc;
i i i V 7 2 (U) i

'5;) +[£i((7]){72:t) (I: 172)7

ot~ hexr T ax T by

where the superscripts ¢ are used to distinguish the chemical species. The
reaction terms are given by

Ri(er,e0,t) = —qreres — querey + 2qa(t)es + qa{t)es, and

Ruler,eat) = qreres — gqueres — qa{t)es;

and Ky (y) = Koexp(y/h). The scalar constants for this problem are K, =
40x 1075V = 1072, Ko = 1078, ¢7 = 163 x 10719, ¢y = 4.66 x 1076,
and e3 = 3.7 x 10'%. The diurnal rate constants are

qi(t) = exp[—a;/sinwt] for sinwt > 0,
g:(t) = 0 for sinwt <0,

where i = 3 and 4, w = /43200, ay = 22.62, and a4 = 7.601. The time
interval of integration is [0, 86400], representing 24 hours measured in sec-
onds.

The problem is posed on the square 0 < r < 20, 30 < y < 50 (all in
ki), with homogeneous Neumann boundary conditions. The PDE system
is treated by central differences on a uniform mesh, with simple polynomial
initial profiles. See [LHBO0] for more details. For the purpose of sensitivity
analysis, we identify the following 8 parameters associated with this prob-
lem: py = q1, p» = q2, P3 = €3, Pa = a3, ps = 4, Ppg = Ky, pr = V, and
ps = Rp. In solving for (say) 5 sensitivities, we are computing the ODE



solution together with the scaled sensitivities with respect to the first 5
parameters; that is, y(¢t) and wq(t),. .., ws(¢).

In the numerical experiments that follow, we allowed the number of sen-
sitivities to vary from | to 8. In computing the scaled sensitivity deriva-
tives, we compared the use of AD against the finite difference strategies
described in Section 2. Two centered difference strategies were examined:
separate evaluations, based on the sum of (2.5) and (2.6); and a combined
evaluation, given by (2.8). A forward difference method was also tested
in which %%w,-([) and ﬁi(%L are each approximated by forward differences.
The results are summarized in Figures 4.1 and 4.2.
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FIGURE 4.1. Comparison of performance for various derivative-computation
strategies. Results are the average of three runs on 4 processors of an SGI Origin
2000.

Although the present framework for using AD includes some inefficien-
cies such as the copying of data, Figure 4.1 shows that AD is still markedly
faster than each of the three finite difference methods. As shown in Fig-
ure 4.2, this advantage can be attributed primarily to the reduced number
of time steps. The increased accuracy of the analytic derivatives provided
by AD results in larger time steps in the variable-stepsize, variable-order
solver.
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FIGURE 4.2. Number of timesteps for various derivative-computation strategies.
Results are the average of three runs on 4 processors of an SGI Origin 2000,

5 Conclusions and Future Work

SensPVODE provides an efficient and easy-to-use mechanism for comput-
ing the sensitivities for simulations that use the PVODE parallel ODE
solver. Results for a simple problem indicate that derivatives computed us-
ing AD provide performance superior to finite difference approximations.
We plan to examine whether this performance advantage holds for more
complex problems, and how well this advantage scales with respect to the
number of processors used.

Future work also includes developing a mechanism that eliminates the
need to copy data from one structure to another, while preserving the
ease of use of the current implementation. This issue is related to those
faced in the use of AD with other numerical toolkits such as PE'T'Sc and
TAO [ABGT00], and we therefore hope to benefit from lessons learned
in those projects. In addition, the algorithms used by SensPVODE re-
quire the solution of linear systems with multiple right-hand side vec-
tors [LHBOO, MP96]. A similar situation arises when one differentiates
through a linear or nonlinear solver [BB98, STG194, HNRS98)]. Thus,
we expect to leverage other work {BBHO00] in the development of block
solvers for systems with multiple right-hand sides. All of these develop-
ments should increase the efficiency of sensitivity computations using Sen-
sPVODE and ADIC. Finally, we note that the SensPVODE package is



available for general distribution. Interested users should contact Alan
Hindmarsh (alanh@linl.gov) and Steven Lee (slee@llnl.gov).
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